
PT5500 Series

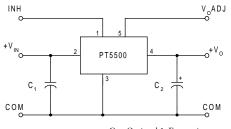
3 Amp 5V/3.3V Input Adjustable Integrated Switching regulator

Power Trends Products from Texas Instruments

SLTS132

(Revised 10/31/2000)

Features


- Single-Device: 5V/3.3V Input
- 90% Efficiency
- Small Footprint
- New 5-pin Copper Package
- Adjustable Output Voltage
- Standby Function
- Short Circuit Protection

Description

The PT5500 is a series of high-performance 3A, 5-pin Integrated Switching Regulators (ISRs). This ISR operates from input voltages as low as 3.1V to provide a local step-down power source for the industry's latest low-voltage logic IC's. Features include output voltage adjustment, inhibit function, and short circuit protection. Only one external capacitor is required for proper operation.

(Patent pending on package assembly)

Standard Application

 C_1 = Optional 1µF ceramic C_2 = Required 100µF electrolytic (1)

Pin-Ou	it Information
Pin	Function
	* * * *

. .

1	Inhibit
2	Vin
 3	GND
4	V _{out}
 5	VoutAdjust

For Inhibit pin: Open = output enabled Ground = output disabled

Ordering Information

PT5501□ = +3.3 Volts PT5502□ = +2.5 Volts PT5503□ = +2.0 Volts PT5504□ = +1.8 Volts PT5505□ = +1.5 Volts PT5506□ = +1.2 Volts PT5507□ = +1.0 Volts

PT Series Suffix (PT1234X) Case/Pin

 Configuration

 Vertical Through-Hole
 N

 Horizontal Through-Hole
 A

 Horizontal Surface Mount
 C

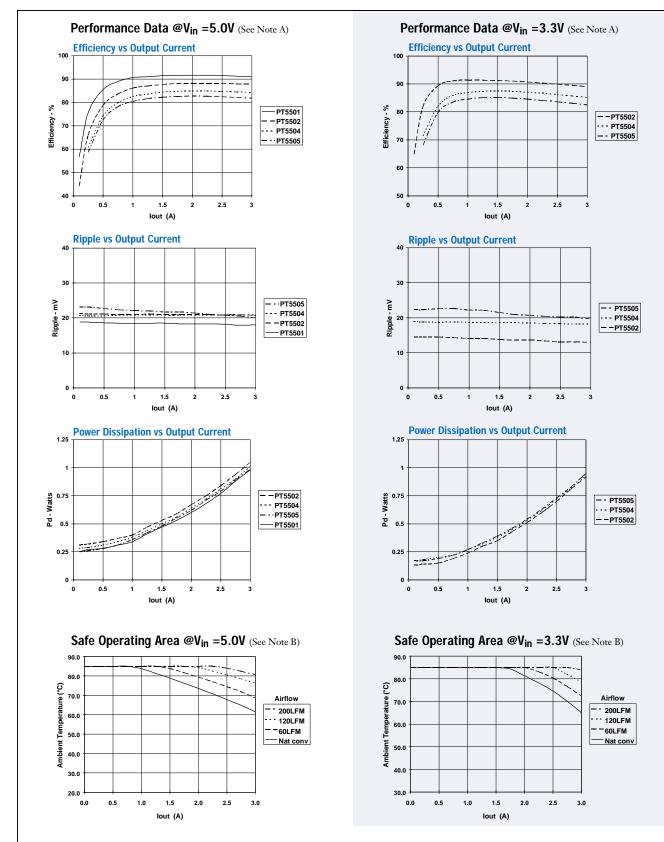
 (For dimensions and PC board layout, see Package Styles 510 and 520.)

Specifications

Characteristics				PT5500 SERIES			
$(T_a = 25^{\circ}C \text{ unless noted})$	Symbols	Conditions		Min	Тур	Max	Units
Output Current	Io	Over V _{in} range		0.1 (2)	_	3.0	А
Current Limit	I _{lim}	Vin=5V		_	5.0	_	А
Input Voltage Range	V _{in}	$0.1\mathrm{A}{\leq}\mathrm{I_{o}}{\leq}\mathrm{I_{o}}\mathrm{max}$	V₀=3.3V V₀≤2.5V	4.5 3.1	—	5.5 5.5	V
Set-Point Voltage Tolerance	Votol	$V_{in} = 5V, I_o = I_o(max)$		_	_	±2	%
Line Regulation	Regline	Io =Iomax, Over Vin range		_	±6.0	±10	mV
Load Regulation	Regload	V _{in} =5V, 0.1A≤ I _o ≤I _o max		_	±10	±25	mV
Vo Temperature Variation	$\Delta \text{Reg}_{\text{temp}}$	$V_{in} = 5V$, $I_0 = I_0(max)$, $-40^{\circ}C \le T_a \le$	+85°C	_	±0.5	_	%
Vo Ripple/Noise	Vn	V _{in} =5V, I _o =I _o max		_	45	_	mV
Transient Response with $C_2 = 100\mu F$	${f V}_{os}^{t_{tr}}$	I_o step between 1.5A and 3.0A V_o over/undershoot		_	50 50	100	μSec mV
Efficiency	η	$V_{in} = 5V$, $I_o = I_o max$	PT5501 PT5502 PT5503 PT5504 PT5505 PT5506 PT5507		90 87 85 83 81 79 76	 	%
Switching Frequency	f_{o}	Over V_{in} range, $0.1A \le I_0 \le I_0$ max		_	350 (3)	_	kHz
Absolute Maximum Operating Temperature Range	Ta	Over V _{in} range		-40 (4)	—	+85 (5)	°C
Storage Temperature	Ts			-40		+125	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002.3 , 1 msec, Half Sine, mounted to a fixture		—	500		G's
Mechanical Vibration		Per Mil-STD-883D, Method 2007 20-2000 Hz, Soldered in a PC boa		_	15	_	G's
Weight	_	_			6.5		grams

Notes: (1) The PT5500 Series requires a 100µF electrolytic or tantalum output capacitor for proper operation in all applications.

(2) The ISR will operate down to no load with reduced specifications.


(3) This is a typical value only. The switching frequency will vary with input voltage.

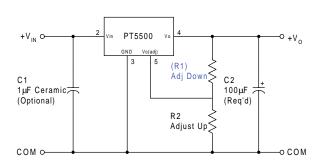
(4) For operation below 0°C, the output capacitor C_2 must have stable characteristics. Use either a low ESR tantalum or Oscon \otimes capacitor.

(5) See SOA curves or consult factory for the appropriate derating.

3 Amp 5V/3.3V Input Adjustable Integrated Switching regulator

Note A: Characteristic data has been developed from actual products tested at 25°C. This data is considered typical data for the ISR. Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer's maximum rated operating temperatures.

V Texas Instruments


Adjusting the Output Voltage of the PT5500 Excalibur™ 5V/3.3V Bus Step-Down ISRs

The output voltage of the PT5500 Series ISRs may be adjusted higher or lower than the factory trimmed pre-set voltage with the addition of a single external resistor. Table 1 accordingly gives the allowable adjustment range for each model for either series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin 5 (V_o adj) and pin 3 (GND).

Adjust Down: Add a resistor (R1), between pin 5 (V_0 adj) and pin 4 (V_{out}).

Figure 1

The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulas. Refer to Figure 1 and Table 2 for both the placement and value of the required resistor; either (R1) or R2 as appropriate.

$$(R1) \qquad = \quad \frac{R_o \left(V_a - 0.9\right)}{V_o - V_a} \qquad -R_s \qquad k\Omega$$

$$R2 \qquad = \quad \frac{0.9 R_o}{V_a - V_o} \qquad -R_s$$

Where: Vo = Original output voltage

- V_a = Adjusted output voltage
- R_o = The resistance value from Table 1
- R_s = The series resistance from Table 1

Table 1

ISR ADJUSTMENT	ISR ADJUSTMENT RANGE AND FORMULA PARAMETERS								
3.0 Adc Rated	PT5501	PT5502	PT5503	PT5504	PT5505	PT5506	PT5507		
1.5 Adc Rated	PT5521	PT5522	PT5523	PT5524	PT5525	PT5526	PT5527		
V _o (nom)	3.3	2.5	2.0	1.8	1.5	1.2	1.0		
Va (min)	2.88	1.97	1.64	1.5	1.3	1.08	0.97		
V _a (max)	3.5	2.95	2.45	2.25	1.95	1.65	1.45		
R ₀ (kΩ)	10.0	10.0	10.0	10.0	10.0	10.2	10.0		
R_S (k Ω)	49.9	20.0	20.0	20.0	20.0	20.0	20.0		

kΩ

For technical support and more information, see inside back cover or visit www.ti.com/powertrends

Notes:

- 1. Use only a single 1% resistor in either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
- 2. Never connect capacitors from V_o adj to either GND or V_{out} . Any capacitance added to the V_o adjust pin will affect the stability of the ISR.
- 3. For each model, adjustments to the output voltage may place additional limits on the minimum input voltage. The revised minimum input voltage must comply with the following requirement.
 - $V_{in}(min) = (V_a + 0.5)V$ or as specified in the data sheet, whichever is greater.

PT5500/5520 Series

3.0 Adc Rated	PT5501	PT5502	PT5503	PT5504	PT5505	PT5506	PT5507
1.5 Adc Rated	PT5521	PT5522	PT5523	PT5524	PT5525	PT5526	PT5527
l₀ (nom)	3.3	2.5	2.0	1.8	1.5	1.2	1.0
la (req.d)							
0.97							(0.0)k £
1.0							
1.05							160.0kΩ
1.1						(0.0)kΩ	71.1kΩ
1.15						(31.0)kΩ	40.0kΩ
1.2						1(4.01.0	25.0kΩ
1.25					(0.0)kΩ	164.0kΩ 71.8kΩ	16.0kΩ 10.0kΩ
1.35					(10.0)kΩ	41.2kΩ	5.7kΩ
1.35					(30.0)kΩ	25.9kΩ	2.5kΩ
1.45					(90.0)kΩ	16.7kΩ	0.0kΩ
1.5				(0.0)kΩ	(70.0)141	10.6kΩ	0.0121
1.55				(6.0)kΩ	160.0kΩ	6.2kΩ	
1.6				(15.0)kΩ	70.0kΩ	3.0kΩ	
1.65			(1.4)kΩ	(30.0)kΩ	40.0kΩ	0.4kΩ	
1.7			(6.7)kΩ	(60.0)kΩ	25.0kΩ		
1.75			(14.0)kΩ	(150.0)kΩ	16.0kΩ		
1.8			(25.0)kΩ		10.0kΩ		
1.85			(43.3)kΩ	160.0kΩ	5.7kΩ		
1.9			(80.0)kΩ	70.0kΩ	2.5kΩ		
1.95			(190.0)kΩ	40.0kΩ	$0.0 \mathrm{k}\Omega$		
2.0		(2.0)kΩ		25.0kΩ			
2.05		(5.6)kΩ	160.0kΩ	16.0kΩ			
2.1		(10.0)kΩ	70.0kΩ	10.0kΩ			
2.15		(15.7)kΩ	0.0kΩ	5.7kΩ			
2.2		(23.3)kΩ	25.0kΩ	2.5kΩ			
2.25		(34.0)kΩ	16.0kΩ	0.0kΩ			
2.3		(50.0)kΩ	10.0kΩ				
2.35		(76.7)kΩ	5.7kΩ				
2.4		(130.0)kΩ	2.5kΩ				
2.45		(284.0)kΩ	0.0kΩ				
2.5							
2.55		160.0kΩ					
2.6		70.0kΩ					
2.65		40.0kΩ					
2.7 2.75		25.0kΩ					
2.75		16.0kΩ 10.0kΩ					
2.85		5.7kΩ					
2.9	(0.0kΩ	2.5kΩ					
2.95	(8.5)kΩ	0.0kΩ					
3.0	(20.1)kΩ						
3.05	(36.1)kΩ						
3.1	(60.1)kΩ						
3.15	(100.0)kΩ						
3.2	(180.0)kΩ						
3.25	(420.0)kΩ						
3.3							
3.35	130.0kΩ						
3.4	40.1kΩ						
3.45	10.1kΩ						
3.48	$0.0 \mathrm{k}\Omega$						

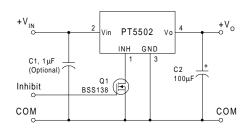
Using the Inhibit Function on the PT5500 Excalibur™ 5V/3.3V Bus Step-Down ISRs

For applications requiring output voltage On/Off control, the 5-pin PT5500 series products incorporate an inhibit function. This function can be used for power-up sequencing or wherever there is a requirement for the module to be switched off. The On/Off function is provided by the Pin 1 (*Inbibit*) control.

The ISR functions normally with Pin 1 open-circuit, providing a regulated output whenever a valid source voltage is applied to V_{in} , (pin 2). When a low-level² ground signal is applied to pin 1, the regulator output will be disabled.

Figure 1 shows an application schematic, which details the typical use of the Inhibit function. Note the discrete transistor (Q1). The Inhibit control has its own internal pull-up to $+V_{in}$ potential. An open-collector or open-drain device is required to control this pin.

The Inhibit pin control thresholds are given in Table 1. Equation 1 may be used to determine the approximate current drawn from the input source, and by Q_1 when the regulator is placed in the inhibit state.


Table 1; Inhibit Control Parameters

Parameter	Min	Max		
Enable (VIH)	Vin - 0.5	Vin		
Disable (VIL)	-0.2V	0.5V		

Equation 1

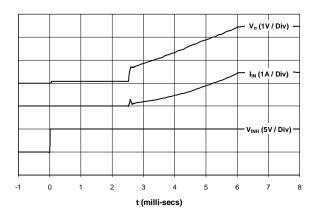

 $I_{stby} = V_{in} \div 10k\Omega \pm 20\%$

Figure 1

Turn-On Time: In the circuit of Figure 1, turning Q_1 on applies a low-voltage to the Inhibit control (pin 1) and disables the regulator output. Correspondingly, turning Q_1 off allows the *Inhibit* control pin to be pulled high by its internal pull-up resistor. The ISR produces a fully regulated output voltage within 10-msec of either the release of the Inhibit control pin. The actual turn-on time will vary with input voltage, output load, and the total amount of load capacitance. Figure 2 shows the typical rise in both output voltage and input current for a PT5502 (2.5V) following the turn-off of Q_1 at time t =0. The waveform was measured with a 5Vdc input voltage, and 2.5A resistive load.

Notes:

- 1. Use an open-collector device (preferably a discrete transistor) for the Inhibit input. A pull-up resistor is not necessary. To disable the output voltage, the control pin should be pulled low to less than +0.5VDC.
- Do not control the Inhibit input with an external DC voltage. This will lead to erratic operation of the ISR and may over-stress the regulator.
- 5. Avoid capacitance greater than 500pF at the Inhibit control pin. Excessive capacitance at this pin will cause the ISR to produce a pulse on the output voltage bus at turn-on.
- Keep the On/Off transition to less than 10µs. This prevents erratic operation of the ISR, which could cause a momentary high output voltage.

